University of Connecticut University of UC Title Fallback Connecticut

Author Archives: Bernard Goffinet

New publication: entomology

A study on the evolutionary history of a lineage of bugs, by colleagues from Argentina and the Smithsonian was recently published in Zoological Journal of the Linnean Society. It is based in part on paratypes and other specimens collected by Dr. Jane O’Donnell that are deposited in our insect collection.

Dellapé P.M., M.C. Melo & T.J. Henry. 2016. A phylogenetic revision of the true bug genus Heraeus (Hemiptera: Rhyparochromidae: Myodochini), with the description of two new genera and 30 new species. Zoological Journal of the Linnean Society 177: 29–134. pdf

The abstract reads: Prior to this study, the genus Heraeus Stål, 1862 included 14 species, all of which are restricted to the Western Hemisphere. Three species are known from the Nearctic Region, nine from the Neotropical Region, and two mainly tropical elements are distributed in both regions. In this contribution, we consider Heraeus cincticornis Stål, 1874 a junior synonym of Heraeus elegans (Walker, 1873), select a lectotype for Heraeus coquilletti Barber, 1914, and neotype for Lygaeus triguttatus Guérin-Méneville, 1857, and describe 28 new species. In addition, the two new genera, Baranowskiobius gen. nov., to include H. elegans (Baranowskiobius elegans comb. nov.) and two new species, and Paraheraeus gen. nov., to include Heraeus eximius Distant, 1882 (Paraheraeus eximius comb. nov.), are described. Previously described species and new taxa are (re)described and illustrated, including male genitalia. Scanning electron micrographs, general habitus photographs, and distribution maps are included for all species studied. A phylogenetic analysis comprising 46 terminal taxa and 50 morphological characters was performed, and five species groups were hypothesized, including the coquilletti, caliginosus, guttatus, illitus, and plebejus groups. All known species of Heraeus and the new genera are included in the phylogenetic analysis. The type species of the genera Myodocha Latreille, 1807, Orthaea Dallas, 1852, and Paisana Dellapé, 2008 are used as out-groups.

New publications: plants

Recent publications from the Les lab on plant systematics, for which voucher specimens are deposited in the CONN herbarium:

Ross T. G., C. F. Barrett, M. S. Gomez, V. K.-Y. Lam, C. L. Henriquez, D. H. Les, J. I. Davis, A. Cuenca, G. Petersen, O. Seberg, M. Thadeo, T. J. Givnish, J. Conran, D. W. Stevenson & S. W. Graham.  2016. Plastid phylogenomics and molecular evolution of Alismatales.  Cladistics 32: 160–178. pdf

Abstract reads: Past phylogenetic studies of the monocot order Alismatales left several higher-order relationships unresolved. We addressed these uncertainties using a nearly complete genus-level sampling of whole plastid genomes (gene sets representing 83 protein-coding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support. All families with multiple genera were resolved as monophyletic, and we inferred strong bootstrap support for most inter- and intrafamilial relationships. The precise placement of Tofieldiaceae in the order was not well supported. Although most analyses inferred Tofieldiaceae to be the sister-group of the rest of the order, one likelihood analysis indicated a contrasting Araceae-sister arrangement. Acorus (Acorales) was not supported as a member of the order. We also investigated the molecular evolution of plastid NADH dehydrogenase, a large enzymatic complex that may play a role in photooxidative stress responses. Ancestral-state reconstructions support four convergent losses of a functional NADH dehydrogenase complex in Alismatales, including a single loss in Tofieldiaceae.

Razifard H., D. H. Les & G. C. Tucker.  2016.  Evidence for the transfer of Elatine rotundifolia to Linderniaceae. Systematic Botany 41: 665–671. pdf

Abstract readsElatine rotundifolia was described in 2008 from Ecuador as a new species because of its unique morphology and geographical distribution. However, an examination of type material for Erotundifolia suggested to us initially that this taxon had been assigned incorrectly to Elatine, despite some superficial similarity to that genus. This possibility was investigated using morphological and molecular data. We found that Erotundifolia differed from other members of Elatine by several vegetative and reproductive features, which indicated a distant alliance closer to Linderniaceae (Lamiids; Asterids) rather than Elatinaceae (Fabids; Superrosids). We then conducted a phylogenetic analysis of DNA sequences from the internal transcribed spacer region, which included isotype material of Erotundifolia, as well as various representatives of Elatinaceae, Linderniaceae, and other angiosperm clades. The molecular data resolved Erotundifolia among several accessions of Micranthemum (Linderniaceae) in a position quite remote phylogenetically from accessions of Bergia and Elatine (Elatinaceae). From these results, we conclude that the name E. rotundifolia refers to a taxon that was misplaced in Elatine, and represents instead a member of Micranthemum (Linderniaceae), and possibly is synonymous with the aquatic species Mumbrosum.

Razifard H., G. C. Tucker, L. Ahart & D. H. Les.  2016.  Noteworthy collections. California. Elatine americanaMadroño 63: 3–4.

King U. M. & D. H. Les.  2016.  A significant new record for Hydrilla verticillata (Hydrocharitaceae) in central Connecticut.  Rhodora 118: 306–309. pdf

New publication: birds

The Elphick lab published further results from their ongoing studies on tidal marsh sparrows. Feathers collected as part of this study are deposited in the collection.

Reference: Borowske A.C., C. Gjerdrum & C.S. Elphick. 2017. Timing of migration and prebasic molt in tidal marsh sparrows with different breeding strategies: comparisons among sexes and species. Auk: Ornithological Advances 134:51–64. pdf

The abstract reads: Breeding strategies can shape the timing of other events and processes, including arrival on the breeding grounds, prebasic molt, and departure for fall migration. We studied these relationships in sympatric Saltmarsh Sparrows (Ammodramus caudacutus) and Seaside Sparrows (A. maritimus), 2 closely related species with notably different breeding strategies. On average, females of both species arrived on the breeding grounds later, initiated molt later, and departed from the breeding grounds later than did conspecific males. Furthermore, we found that female Saltmarsh Sparrows—which mate with multiple males and care for nests, eggs, and chicks alone—were last to arrive on the breeding grounds and last to initiate molt, had the shortest molt duration, and were last to depart for the nonbreeding grounds. Both species exhibited protandry, but Seaside Sparrows averaged earlier arrival on the breeding grounds than Saltmarsh Sparrows. Molt and departure timing also differed between the species, with Seaside Sparrows initiating molt and departing before same-sex Saltmarsh Sparrows. These observations support the hypotheses that breeding strategies can influence arrival timing and that reproductive investment can have carryover effects on molt and departure.

Summer interns in the BRC

This past summer earnings from the collection endowment allowed us to offer internships to several undergraduates who acquired skills in specimen curation, databasing and communicating about their findings. See a brief description of their work here.

Collection course running

img_2656EEB5500 has once again a full enrollment of undergraduate and graduate students who will be introduced to the management of natural history collection. The course is led by Jane O’Donnell, Sue Hochgraf and Robert Capers, with participation of EEB faculty. Student learn among other thing how to mount insects and vascular plants and prepare vertebrates for preservation in our Biodiversity Research Collections.

New publication: peatmosses

The Goffinet lab  contributed to a phylogenomic reconstruction of the Sphagnopsida, and some of the vouchers are deposited in the CONN herbarium.

Shaw A.J., N. Devos, Y. Liu, C. J. Cox, B. Goffinet, K.I. Flatberg & B. Shaw. 2016. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Annals of Botany 118: 185–196.

The abstract reads:

Background and Aims: Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided.

Methods: We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium.

Key Results: Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium.

Conclusions: Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.

New publications: plants

Two studies citing plant specimens deposited in the CONN herbarium were published recently:

Connolly B.A. & I.L. Hale. 2016. Lepidium latifolium (Brassicaceae): Invasive perennial pepperweed observed in Rhode Island. Rhodora 118: 229–231.

Rosman A. J., H. Razifard, G.C. Tucker & D.H. Les. 2016. New records of Elatine ambigua (Elatinaceae), a nonindigenous North American species. Rhodora 118: 235-242.

BRC: Army Ant Guests on FB

Follow activities pertaining to the preservation of the Carl and Marian Rettenmeyer Army Ant Guests Collection on Facebook.


New publication: parasites

A new study from the parasitology lab (Dr. Caira): Marques, F. P. & J. N. Caira, J. N. 2016. Pararhinebothroides-neither the sister-taxon of Rhinebothroides nor a valid genus. The Journal of Parasitology 102: 249-259. pdf


The abstract reads: The genus Pararhinebothroides was established for a species of cestode (Parahinebothroides hobergi) found parasitizing the Tumbes round stingray, Urobatis tumbesensis (McEachran & Chirichigno), in the inshore Pacific waters in the Gulf of Guayaquil, Ecuador. Its apparent affinities with the freshwater endemic genus Rhinebothroides were considered evidence to support the long-standing, yet controversial, biogeographical hypothesis that freshwater stingrays of the family Potamotrygonidae derived from a Pacific marine ancestor during the Cretaceous Period before the uplifting of the Andes. Here, we re-evaluate the phylogenetic and taxonomic status of P. hobergi based on examination of the available type material and newly collected material from the type host near the type locality. The new material allowed the description of tegumental structures using scanning electron microscopy and the generation of a hypothesis for the phylogenetic position of the species based on molecular data for the first time. Morphological investigations revealed that P. hobergi shares all the diagnostic features of the most recent concept of Anthocephalum, including the previously overlooked presence of bothridial apical suckers. Phylogenetic analyses based on partial 28S rDNA (D1–D3) and complete 18S rDNA sequence data for 4 specimens of P. hobergi, 45 species of other rhinebothriideans, and 5 non-rhinebothriidean outgroup species provided unequivocal support for the transfer of P. hobergi to Anthocephalum. Since this is the type and only species of the genus, Pararhinebothroides is considered a junior synonym of Anthocephalum, and Anthocephalum hobergi n. comb. is redescribed. Furthermore, our results reveal Rhinebothroides and Anthocephalum to be only distantly related among the Rhinebothriidea. Not only do our results confirm reservations expressed earlier about the affinities of P. hobergi, but they also substantially challenge inferences drawn previously about the biogeographical history of potamotrygonid stingrays based on parasitological data.

New publication: Solanaceae

Progress in our understanding of the relationships within the “potato-clade” are presented and co-authored by Dr. Gregory Anderson in: Tepe E.J., G.J. Anderson, D.M. Spooner & L. Bohs. 2016. Relationships among wild relatives of the tomato, potato, and pepino. Taxon 65: 262–276. (pdf)

Some of the specimens studied are deposited in the BRC herbarium.

The abstract reads: With ca. 200 species, the informally named Potato clade represents one of the larger subgroups of the estimated 1500 species of Solanum. Because its members include the potato (S. tuberosum), tomato (S. lycopersicum), and pepino (S. muricatum), it is the most economically important clade in the genus. These crop species and their close relatives have been the focus of intensive research, but relationships among major lineages of the Potato clade remain poorly understood. In this study, we use sequences from the nuclear ITS and waxy (GBSSI), and plastid trnTtrnF and trnStrnG to estimate a phylogeny and further explore relationships within the Potato clade. With increased sampling over past studies, the Potato clade emerges as a strongly supported clade and comprises 12–13 subclades which, for the most part, correspond to traditionally recognized sections. Solanum sect. Regmandra is sister to the rest of the lineages of the Potato clade which are, in turn, organized into two major subclades: (1) sections Anarrhichomenum, Articulatum, Basarthrum, Etuberosum, Juglandifolia, LycopersicoidesLycopersicon, and Petota, and (2) sections Herpystichum and Pteroidea. As in all other studies including these groups, sections Etuberosum, Juglandifolia, Lycopersicoides, Lycopersicon, and Petota form a strongly supported clade. Solanum oxycoccoides, a high-elevation species endemic to north-central Peru, was tentatively assigned to several groups within Solanum based on morphological evidence, but instead the species represents an independent lineage within the Potato clade, sister to the first major subclade. A key to the sections of the Potato clade is provided.