Author: Bernard Goffinet

New publication based on our living plant collection

The following publication was released on Nov. 10: Bouda, Martin, Brett A. Huggett, Kyra A. Prats, Jay W. Wason, Jonathan P. Wilson, and Craig R. Brodersen. 2022. Hydraulic failure as a primary driver of xylem network evolution in early vascular plants. Science 378, no. 6620: 642-646. link

The study integrated plants maintained in our Plant Biodiversity Conservatory and Research Core.

Significance of studySince plants colonized land, they have developed increasingly complex vessel architectures to carry water from their roots to their highest leaves. Vascular plants now display a diversity of xylem strand shapes in cross section, from elliptical to linear to many lobed. Bouda et al. investigated whether selection from drought, which causes vessel cavitation and embolism, drove the complexity of xylem strand shape as plants inhabited drier climates. By simulating embolism spread between vessels across varying shape and complexity, including those seen in extant lycophytes and ferns and extinct plant fossils, the authors found that evolutionary changes in xylem strand shape have reduced embolism spread and made plants less vulnerable to drought.

Abstract reads: The earliest vascular plants had stems with a central cylindrical strand of water-conducting xylem, which rapidly diversified into more complex shapes. This diversification is understood to coincide with increases in plant body size and branching; however, no selection pressure favoring xylem strand-shape complexity is known. We show that incremental changes in xylem network organization that diverge from the cylindrical ancestral form lead to progressively greater drought resistance by reducing the risk of hydraulic failure. As xylem strand complexity increases, independent pathways for embolism spread become fewer and increasingly concentrated in more centrally located conduits, thus limiting the systemic spread of embolism during drought. Selection by drought may thus explain observed trajectories of xylem strand evolution in the fossil record and the diversity of extant forms.

Publication: Operation bone rescue!

Kuprewicz, Erin K., Frank MS Muzio, and Greyson Nackid. 2022. Operation Bone Rescue—A case study of remediating flood damage to mammal specimens.  Collection Forum 35: 21–31. pdf

Abstract reads: Water damage to natural history collections can result from both natural and human caused environmental disasters. Floods can result in irreparable damage to scientific specimens, depending on the scale of the disaster, types of specimens affected, and availability of remediation resources. In April 2021, the mammal skeletal collection in the Biodiversity Research Collections (BRC) of the University of Connecticut (UConn) experienced a ceiling flood that affected 612 specimens. In this paper we detail all steps of our specimen rescue process and all materials and equipment we used to complete this remediation in an endeavor we termed “Operation Bone Rescue.” Because we were able to immediately respond to this emergency and implement a complete remediation plan, facilitated by funding from our university, we not only rescued all water-affected specimens, but also improved specimen storage and metadata. We highlight the holistic nature of this successful operation and the key roles played by personnel in the BRC, UConn Facilities Operations, Fire Department, and College of Liberal Arts and Sciences Dean’s Office. A deep appreciation of the value of natural history collections is shared widely on our campus and resulted in the favorable outcomes of this complex, coordinated specimen rescue effort.

6 graders from MMS visit BRC

6th graders from the Mansfield Middle school tour the Biodiversity Research Collections

What better way to learn about adaptations across the tree of life, than by visiting the diverse collections of living plants from around the world, and our global collections of preserved vertebrate, invertebrates and plants held in EEB’s Biodiversity Research Collections (BRC). Following a visit and guided tour, Jennifer O’Brien and Jeff Burham, two science teachers at the Mansfield Middle School realized the unique opportunity the BRC offered in terms of experiential learning for their 6 graders. Spread over three mornings, 120 students visited the collections, learning from our experts how plants are adapted to various climates (Meghan Moriarty, Amanda Garchow & Matt Opel), how plants defend against herbivores (Sarah Taylor), how bird beaks are adapted for feeding on different types of food (Erin Kuprewicz), or how insects avoid predation and utilize camouflage (Katrina Menard). Their minds filled with countless stories, many students asked to come back, and some even seemed decided to become a scientist! Mission accomplished. This awesome experience for these kids was made possible by the continuous support of the BRC by EEB and CLAS, and by supporters like you, and especially by all six amazing tour guides.

6 graders in Biodiversity Collections

New publication based on BRC collection

Our amazing collection of living plants provided specimens of the parasitic mistletoe Viscum minimum (Santalaceae) for this study: Teixeira-Costa, L. 2022. Leveraging micro-CT scanning to analyze parasitic plant-host interactions. JoVE Journal of Visualized Experiments 179: e63423.

Abstract reads: Micro-CT scanning has become an established tool in investigating plant structure and function. Its non-destructive nature, combined with the possibility of threedimensional visualization and virtual sectioning, has allowed novel and increasingly detailed analysis of complex plant organs. Interactions among plants, including between parasitic plants and their hosts, can also be explored. However, sample preparation before scanning becomes crucial due to the interaction between these plants, which often differ in tissue organization and composition. Furthermore, the broad diversity of parasitic flowering plants, ranging from highly reduced vegetative bodies to trees, herbs, and shrubs, must be considered during the sampling, treatment, and preparation of parasite-host material. Here two different approaches are described for introducing contrast solutions into the parasite and/or host plants, focusing on analyzing the haustorium. This organ promotes connection and communication between the two plants. Following a simple approach, details of haustorium tissue organization can be explored three-dimensionally, as shown here for euphytoid, vine, and mistletoe parasitic species. Selecting specific contrasting agents and application approaches also allow detailed observation of endoparasite spread within the host body and detection of direct vessel-to-vessel connection between parasite and host, as shown here for an obligate root parasite. Thus, the protocol discussed here can be applied to the broad diversity of parasitic flowering plants to advance the understanding of their development, structure, and functioning.

New publication on mammals

Vole skins & skulls in vialsSchlis-Elias, M. C. & J. L. Malaney. 2022. Island biogeography predicts skull gigantism and shape variation in meadow voles (Microtus pennsylvanicus) through ecological release and allometry. Oikos 2022: e08777 pdf (doi: 10.1111/oik.08777).

The authors investigated the Island Rule (a pattern of gigantism in animal species on islands that are small-bodied on the mainland and dwarfism among island species that are large-bodied on the mainland) using meadow vole (Microtus pennsylvanicus) specimens from the UCONN BRC mammal skull collection. Schlis-Elias and Malaney used 21 dorsal cranium landmarks and 25 ventral cranium landmarks to quantify vole skull sizes in eleven island and three mainland populations in northern Atlantic and Pacific coastal regions. They did find strong evidence of the Island Rule in meadow voles: the smallest islands had the largest voles! This size disparity is related to ecological release: insular populations of meadow voles encounter few predators compared to their mainland counterparts.

All data from this paper are openly accessible and available on DRYAD (https://datadryad.org/stash/dataset/doi:10.5061/dryad.jdfn2z3cj).

In total, 31 UCONN M. pennsylvanicus specimens were used in this work and we are excited to continue our collaboration with the authors in their future research endeavors!

 

 

462 specimens of bryophytes donated to CONN

Nancy Slack in Alberta
Dr. Nancy Slack in Alberta, Canada, in 1976 (C) Dale Vitt

Dr. Nancy Slack, retired professor from Russell Sage College donated 462 packets of Bryophytes collected mostly from Denmark, Finland, Norway, and Sweden, and with samples from the former USSR, Santa Cruz (Galapagos Islands), USA, Wales, and Slovakia. The species are distributed among at least 33 families. Wonderful addition to the bryophyte herbarium. Thank you.

 

New publications on lichens from CONN

Frye H.A., Z. Muscavitch & B. Goffinet. 2021. Discovery of epiphytic lichens in Connecticut suggests novel introduction and reintroduction via horticultural practices. The Bryologist 124: 191–197. pdf

Abstract readsThe discovery of Teloschistes chrysophthalmus in Connecticut more than one hundred years since its last known occurrence is argued to result from human introduction. The species only occurred on the horticultural tree, Gleditsia triacanthos var. inermis, planted on the University of Connecticut campus. Gleditsia triacanthos is not indigenous to northeastern North America but is widespread in the central United States. Other epiphytic macrolichens also recorded on this phorophyte include Punctelia bolliana and Parmotrema austrosinense, both widespread in the central United States, and new to Connecticut and New England, respectively. This is likely the first reported case of combined introductions of lichenized fungi in North America through the import of ornamental trees.

Storrs L. Olson supporter of bryology at UCONN passed away

Storrs L. Olson and B. Goffinet examining Dillenius' 1741 book "History Muscorum"
Storrs L. Olson and B. Goffinet examining Dillenius’ 1741 book “History Muscorum”

Storrs L. Olson, an international renowned ornithologist and emeritus curator of birds at The National Museum of Natural History, Smithsonian Institution, passed away on January 20, 2020 in Fredericksburg, VA. Storrs Olson was also a passionate bryologist, inspired by a bryology course taught by Ruth Breen (author of the Mosses of Florida, 1963, University of Florida Press Gainesville) at Florida State University.

Storrs had acquired a comprehensive library of bryological literature that included one of 250 copies of John Dillenius’ 1741 Historia Muscorum, Hedwig’s 1801 Species Muscorum Frondosorum and Schwägrichen’s 1830 Species Muscorum Frondosorum.

In 2008, Storrs donated his entire library to the University of Connecticut in support of bryological research, and the collection of books and reprints is housed in the library of the Biodiversity Research Collection as the Storrs L. Olson bryological library. Through financial support from Storrs, his mother and various donors, the library continues to grow, and currently holds close to 1800 publications.

We remain grateful for his support. Our sincere condolences to his family. Obituary

 

New publication based on paleo collection

Na Y., J. Blanchard & H. Wang. 2020. Fruits, seeds and flowers from the Puryear clay pit (middle Eocene Cockfield Formation), western Tennessee, USA. Palaeontologia Electronica 23:a49. pdf

Abstract reads: Based on examination of 352 specimens collected from the Puryear clay pit (middle Eocene Cockfield Formation, Claiborne Group), Henry County, Tennessee, we recognize 72 fossil taxa/morphotypes of angiosperms. Thirty-two taxa/morphotypes are related to the following 12 extant families: Altingiaceae (2), Araliaceae (1), Arecaceae (2), Cannabaceae (1), Ceratophyllaceae (1), Euphorbiaceae (1), Fabaceae (11), Fagaceae (7), Juglandaceae (3), Oleaceae (1), Theaceae (1), and Ulmaceae (1). The rest (40 taxa/morphotypes) do not have enough diagnostic characters to assess their modern affinities. We establish two new fossil species Andrewsiocarpon puryearensis sp. nov. (Theaceae) and Paleopanax puryearensis sp. nov. (Araliaceae). Of the 72 taxa/morphotypes recognized, 50 are unique to the Puryear locality (Cockfield Formation), 11 are shared with the Warman locality (Cockfield Formation), eight are shared with the Bovay and Bolden localities (Tallahatta Formation), and three are shared by all three localities. Of the 155 taxa/morphotypes recognized from the Bovay/Bolden, Warman, and Puryear localities, only three taxa/morphotypes are shared by all three localities. This study has expanded our knowledge of the Eocene plant diversity of the southeastern United States and has further confirmed our previous observation that there is a remarkable lack of species overlap among the localities examined to date.